Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600530

RESUMO

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Assuntos
Quirópteros , Vírus , Animais , Animais Selvagens , Genoma Viral/genética , Filogenia , Recombinação Genética , Roedores , Uganda/epidemiologia
2.
Virus Res ; 339: 199266, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37944758

RESUMO

Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.


Assuntos
Anopheles , Culex , Flavivirus , Vírus de Insetos , Animais , Anopheles/genética , Filogenia , Quênia , Vírus de Insetos/genética , RNA
4.
Trop Anim Health Prod ; 54(5): 332, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175571

RESUMO

Agricultural use of antimicrobials in food animal production may contribute to the global emergence of antimicrobial resistance (AMR). However, considerable gaps exist in research on the use of antimicrobial drugs (AMDs) in food animals in small-scale production systems in low- and middle-income countries, despite the minimal regulation of antimicrobials in such regions. The aim of this study was to identify factors that may influence AMD use in livestock among pastoral communities in Kenya. We collected data related to household and herd demographics, herd health, and herd management from 55 households in the Maasai Mara ecosystem, Kenya, between 2018 and 2019. We used multi-model logistic regression inference (supervised machine learning) to ascertain trends in AMD use within these households. AMD use in cattle was significantly associated with AMD use in sheep and goats (p = 0.05), implying that decisions regarding AMD use in cattle or sheep and goats were interdependent. AMD use in sheep and goats was negatively associated with vaccination against the foot and mouth disease (FMD) virus in cattle (OR = 0.06, 95% CI 0.01-0.67, p = 0.02). Less AMD use was observed for vaccine-preventable diseases like contagious ecthyma when households had access to state veterinarians (OR = 0.06, p = 0.05, 95% CI 0.004-0.96). Overall, decisions to use AMDs were associated with vaccine usage, occurrence of respiratory diseases, and access to animal health advice. This hypothesis-generating study suggests that applying community-centric methods may be necessary to understand the use of AMDs in pastoral communities.


Assuntos
Anti-Infecciosos , Vírus da Febre Aftosa , Médicos Veterinários , Animais , Anti-Infecciosos/uso terapêutico , Bovinos , Ecossistema , Cabras , Humanos , Quênia/epidemiologia , Ovinos
5.
Microbiol Resour Announc ; 11(10): e0058422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36094180

RESUMO

Nearly complete genomes of 49 novel foot-and-mouth disease virus (FMDV) SAT1 strains acquired from oropharyngeal fluid samples from asymptomatic African Cape buffalo in Kenya in 2016 were determined. Sequences were from primary passage or plaque-purified dually SAT1/SAT2-infected samples. These sequences are important for elucidation of the molecular epidemiology of persistent and subclinical FMDV infections.

6.
Microbiol Resour Announc ; 11(10): e0058522, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36094207

RESUMO

Foot-and-mouth disease virus (FMDV) SAT2 sequences were acquired from Cape buffalo in Kenya in 2016, from either primary passage (n = 38) or plaque purification of dually SAT1/SAT2-infected samples (n = 61). All samples were derived from asymptomatic animals. These sequences contribute to our understanding of FMDV diversity in reservoirs and during subclinical FMDV infections.

7.
Virol Sin ; 37(4): 491-502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680114

RESUMO

Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.


Assuntos
Herpesviridae , Polyomavirus , Animais , Genoma Viral , Quênia , Murinae , Filogenia , Polyomavirus/genética , Musaranhos/genética
8.
Viruses ; 14(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35632639

RESUMO

African buffalo are the natural reservoirs of the SAT serotypes of foot-and-mouth disease virus (FMDV) in sub-Saharan Africa. Most buffalo are exposed to multiple FMDV serotypes early in life, and a proportion of them become persistently infected carriers. Understanding the genetic diversity and evolution of FMDV in carrier animals is critical to elucidate how FMDV persists in buffalo populations. In this study, we obtained oropharyngeal (OPF) fluid from naturally infected African buffalo, and characterized the genetic diversity of FMDV. Out of 54 FMDV-positive OPF, 5 were co-infected with SAT1 and SAT2 serotypes. From the five co-infected buffalo, we obtained eighty-nine plaque-purified isolates. Isolates obtained directly from OPF and plaque purification were sequenced using next-generation sequencing (NGS). Phylogenetic analyses of the sequences obtained from recombination-free protein-coding regions revealed a discrepancy in the topology of capsid proteins and non-structural proteins. Despite the high divergence in the capsid phylogeny between SAT1 and SAT2 serotypes, viruses from different serotypes that were collected from the same host had a high genetic similarity in non-structural protein-coding regions P2 and P3, suggesting interserotypic recombination. In two of the SAT1 and SAT2 co-infected buffalo identified at the first passage of viral isolation, the plaque-derived SAT2 genomes were distinctly grouped in two different genotypes. These genotypes were not initially detected with the NGS from the first passage (non-purified) virus isolation sample. In one animal with two SAT2 haplotypes, one plaque-derived chimeric sequence was found. These findings demonstrate within-host evolution through recombination and point mutation contributing to broad viral diversity in the wildlife reservoir. These mechanisms may be critical to FMDV persistence at the individual animal and population levels, and may contribute to the emergence of new viruses that have the ability to spill-over to livestock and other wildlife species.


Assuntos
Coinfecção , Vírus da Febre Aftosa , Febre Aftosa , Animais , Animais Selvagens , Búfalos , Proteínas do Capsídeo/genética , Coinfecção/veterinária , Febre Aftosa/epidemiologia , Quênia , Filogenia , Sorogrupo
9.
Ticks Tick Borne Dis ; 13(3): 101935, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325688

RESUMO

Understanding factors that shape tick population genetic structure is important as they may be exploited in crafting strategies for vector control. Amblyomma tholloni, or "elephant tick" is a three-host tick whose adults preferentially parasitize African elephants. The aim of this study was to determine the influence of fragmentation of the host populations on the genetic structure of this tick species from different ecosystems in Kenya, using the second internal transcribed spacer (ITS-2) and mitochondrial cytochrome oxidase 1 (CO1) loci. Population genetic analysis of ticks collected from four elephant populations using ITS-2 and CO1 loci revealed high gene diversity. Gene diversity at the ITS-2 locus was 0.91 and the nucleotide diversity was, 0.01. ITS-2 gene diversity was highest in Laikipia-Samburu ecosystem (0.947) and lowest in Tsavo (0.80). The CO1 locus also had high gene diversity, 0.790, and low nucleotide diversity, 0.006, and like ITS-2, gene diversity was higher in Laikipia-Samburu ecosystem (1.00) and lower in Tsavo (0.286). There was a modest statistically significant genetic differentiation among the four tick populations based on ITS-2 (FST = 0.104, P < 0.001; ΦST = 0.105, P < 0.001), and a 10% of molecular variance attributed to genetic variation between populations. There was also statistically significant differentiation among tick populations using haplotype frequencies for CO1 locus (FST = 0.167, P < 0.001) accounting for 17% of genetic variance among populations, but not modelled genetic distances (ΦST = 0.029, P = 0.095) suggesting very recent genetic differentiation. In addition, populations of A. tholloni in Kenya had a significantly negative Tajima D and Fu & Li's F* and D* at the CO1 locus suggesting recent positive selection. The extensive acaricide use in livestock, which host the larval stage, could be driving purifying selection and genetic hitchhiking of the CO1 locus. However, tests sensitive to demography such as Fu's FS, Ramos-Onsins & Rozas's R2 and raggedness index r were statistically significant at the ITS-2 locus suggesting ancient demographic expansion. Elephant population fragmentation appears to shape the genetic structure of A. tholloni, while agro-ecological factors could influence the genetic diversity of ticks.


Assuntos
Elefantes , Carrapatos , Amblyomma , Animais , Ecossistema , Elefantes/genética , Genética Populacional , Quênia , Repetições de Microssatélites , Carrapatos/genética
10.
Vector Borne Zoonotic Dis ; 21(10): 809-816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34559011

RESUMO

Crimean Congo Hemorrhagic Fever (CCHF) is an emerging tick-borne zoonotic viral disease with the potential of causing public health emergencies. However, less is known about the role of wildlife and livestock in spreading the virus. Therefore, we aimed to assess how the interactions between African buffalo (Syncerus caffer) and cattle may influence the seroprevalence of CCHF across livestock-wildlife management systems in Kenya. The study included archived sera samples from buffalo and cattle from wildlife only habitats (Lake Nakuru National Park and Solio conservancy), open wildlife-livestock integrated habitats (Maasai Mara ecosystem and Meru National Park), and closed wildlife-livestock habitats (Ol Pejeta Conservancy) in Kenya. We analyzed 191 buffalo and 139 cattle sera using IDvet multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The seroprevalence toward Crimean Congo hemorrhagic fever virus (CCHFV) was significantly higher for buffalo compared to cattle (75.3% and 28.1%, respectively, p < 0.001). We obtained the highest seroprevalence among buffalo of 92.1% in closed wildlife only systems compared to 28.8% and 46.1% prevalence in closed-integrated and open-integrated systems, respectively. The regression coefficients were all negative for cattle compared to buffalo in both closed-integrated and open-integrated compared to wildlife only system. Our results show that CCHFV circulates among the diverse animal community in Kenya in spatially disconnected foci. The habitat overlap between cattle and buffalo makes cattle a "bridge species" or superspreader host for CCHFV and increases transmission risks to humans. The effect of animal management system on prevalence is depended on tick control on the cattle and not the animal per se. We conclude that buffalo, a host with a longer life span than livestock, is a reservoir and may serve as a sentinel population for longitudinal surveillance of CCHFV.


Assuntos
Doenças dos Bovinos , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Animais Selvagens , Anticorpos Antivirais , Bovinos , Doenças dos Bovinos/epidemiologia , Ecossistema , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Quênia/epidemiologia , Gado , Estudos Soroepidemiológicos
11.
Prev Vet Med ; 188: 105259, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33453561

RESUMO

Livestock movements are important drivers for infectious disease transmission. However, paucity of such data in pastoralist communities in rangeland ecosystems limits our understanding of their dynamics and hampers disease surveillance and control. The aim of this study was to investigate animal movement networks in a pastoralist community in Kenya, and assess network-based strategies for disease control. We used network analysis to characterize five types of between-village animal movement networks. We then evaluated implications of these networks for disease spread and control by quantifying topological changes in the network associated with targeted and random removal of nodes. To construct these networks, data were collected using standardized questionnaires (N = 165 households) from communities living within the Maasai Mara Ecosystem in southwestern Kenya. Our analyses show that the Maasai Mara National Reserve (MMNR), a protected wildlife area, was critical for maintaining village connectivity in the agistment network (dry season grazing), with MMNR-adjacent villages being highly utilized during the dry season. In terms of disease dynamics, the network-based basic reproduction number, R0, was sufficient to allow disease invasion in all the five networks, and removal of villages based on degree or betweenness was not efficient in reducing R0. However, we show that villages with high degree or betweenness may play an important role in maintaining network connectivity, which may not be captured by assessment of R0 alone. Such villages may function as potential "firebreaks." For example, targeted removal of highly connected village nodes was more effective at fragmenting each network than random removal of nodes, indicating that network-based targeting of interventions such as vaccination could potentially disrupt transmission pathways in the ecosystem. In conclusion, this work shows that animal movements have the potential to shape patterns of disease transmission in this ecosystem, with targeted interventions being a practical and efficient measure for disease control.


Assuntos
Criação de Animais Domésticos , Doenças dos Bovinos , Controle de Doenças Transmissíveis/estatística & dados numéricos , Transmissão de Doença Infecciosa/veterinária , Doenças das Cabras , Doenças dos Ovinos , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/transmissão , Transmissão de Doença Infecciosa/estatística & dados numéricos , Doenças das Cabras/prevenção & controle , Doenças das Cabras/transmissão , Cabras , Quênia , Gado , Modelos Teóricos , Ovinos , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/transmissão , Carneiro Doméstico , Meios de Transporte
12.
Ecol Evol ; 11(24): 18562-18574, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003693

RESUMO

Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000-350,000 years ago, corresponding to around the Pliocene-Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.

13.
Transbound Emerg Dis ; 67(5): 2206-2221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32303117

RESUMO

Quantitative knowledge on the contribution of African buffalo to the epidemiology of foot-and-mouth disease virus (FMDV) in East Africa is lacking, and this information is essential for the design of control programs in the region. The objective of this study was to investigate the epidemiology of FMDV in buffalo, including the role of buffalo in the circulation of FMDV in livestock populations. We collected blood and oropharyngeal fluids from 92 wild buffalo and 98 sympatric cattle in central Kenya and sequenced the virus' VP1 coding region. We show that FMDV has a high seroprevalence in buffalo (~77%) and targeted cattle (~93%). In addition, we recovered 80 FMDV sequences from buffalo, all of which were serotype SAT1 and SAT2, and four serotype O and A sequences from sympatric cattle. Notably, six individual buffalo were co-infected with both SAT1 and SAT2. Amongst sympatric buffalo and cattle, the fact that no SAT1 or 2 sequences were found in cattle suggests that transmission of FMDV from buffalo to sympatric cattle is rare. Similarly, there was no evidence that serotype O and A sequences found in cattle were transmitted to buffalo. However, viruses from FMDV outbreaks in cattle elsewhere in Kenya were closely related to SAT1 and SAT2 viruses found in buffalo in this study, suggesting that FMDV in cattle and buffalo do not constitute independently evolving populations. We also show that fine-scale geographic features, such as rivers, influence the circulation of FMDV in buffalo and that social segregation amongst sympatric herds may limit between-herd transmission. These results significantly advance our understanding of the ecology and molecular epidemiology of FMDV at wildlife-livestock interfaces in East Africa and will help to inform the design of control and surveillance strategies for this disease in the region.

14.
Parasit Vectors ; 13(1): 145, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188499

RESUMO

BACKGROUND: The dynamics of helminth infection in African elephant populations are poorly known. We examined the effects of age, sex, social structure and the normalized difference vegetation index (NDVI) as primary drivers of infection patterns within and between elephant populations. METHODS: Coprological methods were used to identify helminths and determine infection patterns in distinct elephant populations in Maasai Mara National Reserve, Tsavo East National Park, Amboseli National Park and Laikipia-Samburu Ecosystem. Gaussian finite mixture cluster analyses of egg dimensions were used to classify helminth eggs according to genera. Generalized linear models (GLM) and Chi-square analyses were used to test for variation in helminth infection patterns and to identify drivers in elephant populations. RESULTS: Helminth prevalence varied significantly between the studied populations. Nematode prevalence (96.3%) was over twice as high as that of trematodes (39.1%) in elephants. Trematode prevalence but not nematode prevalence varied between populations. Although we found no associations between helminth infection and elephant social groups (male vs family groups), the median helminth egg output (eggs per gram, epg) did vary between social groups: family groups had significantly higher median epg than solitary males or males in bachelor groups. Young males in mixed sex family groups had lower epg than females when controlling for population and age; these differences, however, were not statistically significant. The average NDVI over a three-month period varied between study locations. Cluster analyses based on egg measurements revealed the presence of Protofasciola sp., Brumptia sp., Murshidia sp., Quilonia sp. and Mammomonogamus sp. GLM analyses showed that the mean epg was positively influenced by a three-month cumulative mean NDVI and by social group; female social groups had higher epg than male groups. GLM analyses also revealed that epg varied between elephant populations: Samburu-Laikipia elephants had a higher and Tsavo elephants a lower epg than Amboseli elephants. CONCLUSIONS: Elephants had infection patterns characterized by within- and between-population variation in prevalence and worm burden. Sociality and NDVI were the major drivers of epg but not of helminth prevalence. Gastrointestinal parasites can have a negative impact on the health of wild elephants, especially during resource scarcity. Thus, our results will be important when deciding intervention strategies.


Assuntos
Elefantes/parasitologia , Fezes/parasitologia , Helmintíase Animal/epidemiologia , Helmintos/isolamento & purificação , Enteropatias Parasitárias/veterinária , Animais , Ecossistema , Feminino , Helmintos/classificação , Enteropatias Parasitárias/epidemiologia , Quênia/epidemiologia , Masculino , Contagem de Ovos de Parasitas , Plantas , Prevalência
15.
Vector Borne Zoonotic Dis ; 20(2): 71-81, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31556813

RESUMO

Introduction: Two species of Aedes (Ae.) mosquitoes (Ae. aegypti and Ae. albopictus) are primary vectors for emerging arboviruses that are a significant threat to public health and economic burden worldwide. Distribution of these vectors and the associated arboviruses, such as dengue virus, chikungunya virus, yellow fever virus, and Zika virus, was for a long time restricted by geographical, ecological, and biological factors. Presently, arbovirus emergence and dispersion are more rapid and geographically widespread, largely due to expansion of the range for these two mosquitoes that have exploited the global transportation network, land perturbation, and failure to contain the mosquito population coupled with enhanced vector competence. Ae. aegypti and Ae. albopictus may also sustain transmission between humans without having to depend on their natural reservoir forest cycles due to arthropod adaptation to urbanization. Currently, there is no single strategy that is adequate to control these vectors, especially when managing arbovirus outbreaks. Objective: This review aimed at presenting the characteristics and abilities of Ae. aegypti and Ae. albopictus, which can drive a global public health risk, and suggests strategies for prevention and control. Methods: This review presents the geographic range, reproduction and ecology, vector competence, genetic evolution, and biological and chemical control of these two mosquito species and how they have changed and developed over time combined with factors that may drive pandemics and mitigation measures. Conclusion: We suggest that more efforts should be geared toward the development of a concerted multidisciplinary approach.


Assuntos
Aedes/virologia , Infecções por Arbovirus/transmissão , Mosquitos Vetores , Distribuição Animal , Animais , Infecções por Arbovirus/epidemiologia , Arbovírus , Humanos , Controle de Mosquitos/métodos , Pandemias , Fatores de Risco
16.
Front Microbiol ; 10: 2696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824465

RESUMO

The majority of emerging and reemerging zoonotic viral pathogens are RNA viruses. Pathogen discovery programs of emerging infectious diseases (EIDs) in wildlife have implicated rodents and shrews as hosts of diverse human pathogens, such as hantaviruses, arenaviruses, paramyxoviruses, etc. Despite these threats, little is known about the diversity of viruses circulating among rodents and shrews in Kenya, meaning the risk of infectious disease outbreak from these small mammals could be oblivious. This study reports the first surveillance toward understanding the diversity of RNA viruses carried by rodents and shrews in areas of high-potential contact with humans in Kenya through molecular detection. A total of 617 samples comprising fecal, urine, and tissues from 138 rodents and 5 shrews were screened for eight different families of viruses using RT-PCR assays. The results highlight the presence of diverse astroviruses, paramyxoviruses, hepeviruses, and arenavirus, circulating in both wild and synanthropic Kenyan rodents and shrews. Most of the viruses detected in this study are novel strains and some belong to the families that contain important human viral pathogens. Notably, a novel arenavirus was detected in Grammomys macmillani, a rodent species newly identified to harbor arenavirus, and it potentially represent a novel arenavirus species. Our findings demonstrate the need for continued pathogen surveillance among these small mammals as well as among the vulnerable and exposed livestock and humans. This would help in development and implementation of effective preventive and control strategies on EIDs in countries with rich wildlife biodiversity like Kenya.

17.
PLoS One ; 14(12): e0226083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805127

RESUMO

Although historical records indicate the presence of Ehrlichia and Babesia in African elephants, not much is known about their prevalence and diversity in elephants and their ticks, Amblyomma thollonii and Rhipicephalus humeralis. We amplified and sequenced the hypervariable V4 region of the 18S rRNA gene of Babesia and Theileria and the heat shock protein gene (groEL) of Ehrlichia/Anaplasma in DNA extracted from elephant blood (n = 104) and from elephant ticks (n = 52). Our results showed that the African elephants were infected with a novel Babesia spp. while A. thollonii was infected with Theileria bicornis and Theileria cf. velifera. This is the first record of T. bicornis; a protozoan that is linked to fatal infection in rhinoceros in a tick. Elephants and their ticks were all infected with a species of Ehrlichia like that identified in Japanese deer. The prevalence of Babesia spp., Theileria spp. and Ehrlichia spp. in ticks was higher than that of their elephant hosts. About 13.5% of elephants were positive for Theileria or Babesia while 51% of A. thollonii ticks and 27% of R. humeralis ticks were positive for Theileria or Babesia. Moreover, 5.8% of elephants were positive for Ehrlichia or Anaplasma compared to 19.5% in A. thollonii and 18% in R. humeralis. There was no association between the positive result in ticks and that of their elephant hosts for either Babesia spp., Theileria spp. or Ehrlichia spp. Our study reveals that the African elephants are naturally infected with Babesia spp and Ehrlichia spp and opens up an opportunity for further studies to determine the role of elephant as reservoirs of tick-borne pathogens, and to investigate their potential in spreading these pathogens as they range extensively. The presence of T. bicornis in A. thollonii also suggests a need for experiments to confirm its vector competence.


Assuntos
Anaplasma/isolamento & purificação , Babesia/isolamento & purificação , Ehrlichia/isolamento & purificação , Elefantes/parasitologia , Theileria/isolamento & purificação , Carrapatos/microbiologia , Carrapatos/parasitologia , Anaplasma/genética , Anaplasma/fisiologia , Animais , Babesia/genética , Babesia/fisiologia , Ehrlichia/genética , Ehrlichia/fisiologia , RNA Ribossômico 18S/genética , Theileria/genética , Theileria/fisiologia
18.
Microbiol Resour Announc ; 8(36)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488534

RESUMO

Here, we report the near-complete genomes of three Southern African Territories 1 (SAT1) serotype strains and one SAT2 serotype strain of foot-and-mouth disease virus (FMDV) recently isolated from Kenya. Viral isolates were obtained from bovine epithelial tissues collected in 2014 and 2016 following outbreaks of foot-and-mouth disease (FMD). These near-complete genome sequences provide a critical update of Kenyan FMDV molecular epidemiology.

19.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537675

RESUMO

We report the genome sequence of a foot-and-mouth disease virus (FMDV) serotype A topotype Africa isolate collected from bovine vesicular epithelium from Kenya in 2016. This novel sequence updates the knowledge of FMDV diversity in eastern Africa and has important implications for FMDV epidemiology and molecular analyses.

20.
Rev Med Virol ; 29(6): e2079, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410931

RESUMO

In the last decade, virus hunting and discovery has gained pace. This achievement has been driven by three major factors: (a) advancements in sequencing technologies, (b) scaled-up routine arbovirus surveillance strategies, and (c) the "hunt" for emerging pathogens and novel viruses. Many novel viruses have been discovered from a myriad of hosts, vectors, and environmental samples. To help promote understanding of the global diversity and distribution of mosquito-associated viruses and facilitate future studies, we review mosquito-associated viruses discovered between years 2007 and 2017, across the world. In the analyzed period, novel mosquito-associated viruses belonging to 25 families and a general group of unclassified viruses were categorized. The top three discovered novel mosquito-associated viruses belonged to families Flaviviridae (n=32), Rhabdoviridae (n=16), and Peribunyaviridae (n=14). Also, 67 unclassified viruses were reported. Majority of these novel viruses were identified from Culex spp, Anopheles spp, Aedes spp, and Mansonia spp mosquitoes, respectively. Notably, the number of these discovered novels is not representative of intercontinental virus diversity but rather is influenced by the number of studies done in the study period. Some of these newly discovered mosquito-associated viruses have medical significance, either directly or indirectly. For instance, in the study period, 14 novel mosquito-borne viruses that infect mammalian cells in vitro were reported. These viruses pose a danger to the global health security on emerging viral diseases. On the other hand, some of the newly discovered insect specific viruses described herein have potential application as future biocontrol and vaccine agents against known pathogenic arboviruses. Overall, this review outlines the crucial role played by mosquitoes as viral vectors in the global virosphere.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Vírus/classificação , Vírus/genética , Animais , Genes Virais , Filogenia , Filogeografia , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...